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On the basis of the isomorphism of critical phenomena, the behavior of trans- 
port properties of binary mixtures in the vicinity of the vapor-liquid critical line 
is considered. In particular, the renormalization of the singularity of the thermal 
conductivity in dilute critical solutions has been analyzed in detail. It is shown 
that the behavior of the thermal conductivity is determined by the "critical 
background," i.e., the fluctuation-induced regular part, which diverges at the 
critical point of a solvent. 
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1. I N T R O D U C T I O N  

It is well-known that in the vicinity of the vapor-liquid critical point of 
a fluid, both thermodynamic and transport properties manifest singular 
power-law behavior (see, for example, Refs., 1 and 2). The exponents of 
these power laws (critical exponents) are universal, i.e., system indepenent. 
The hypothesis of isomorphism of critical phenomena allows one to 
generalize the concept of universality, formulated at first for one-compo- 
nent fluids, to binary and multicomponent mixtures I-3, 4]. Near-critical 
systems will be isomorphic if the corresponding free energies have the same 
functional dependences on the thermodynamic variables provided that they 
are suitably chosen. A rule for the choice of isomorphic variables is 
determined by the stability-limit condition of a system with respect to 
variations of the order parameter. 

At the critical point of a binary mixture the stability-limit condition is 
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where the density of the "isomorphic" free energy pA* and the pressure P 
depend on the temperature T, density p, and field variable #, which is equal 
to the difference of the chemical potentials of the two components, 

= # 2 7  Pl. The isomorphic variable # is conjugate to the mole fraction of 
the second component 

x = N 2 / ( N  1+N2)= _ [ 0 A ' l / \  (2) 

where N1 and N2 are the number of moles of the components. The 
isomorphic molar free energy A* is connected with the Helmholtz molar 
free energy A of a mixture by the relation 

A*(T, v, p ) = A ( T ,  v, x ) - - # x  (3) 

where v = lip is the molar volume. As x --* 0 and as x ~ 1 the critical line 
terminates at the critical points of the pure components, while the free 
energy A*(T, v, #) approaches the usual Helmholtz free energy A(T, v). 
The isomorphism hypothesis assumes that, at the constant field variable #, 
the free-energy density pA* has the identical functional dependence on 
temperature and order parameter that pA has in a one-component fluid. In 
other words, if the temperature distance to the critical point of a mixture 

T -  T~(U) ~(~) - 

To(u) 

and the order parameter 

~(~) 
p~O,) 

are, respectively, the dimensionless deviation of temperature and density 
from their critical values To(#) and Pc(#), and the singular part of pA* 
depends on v(#) and go(/~) at # = constant just the same as the singular part 
of pA in a one-component fluid depends on T = ( T - T c ) / T  c and on the 
order parameter q~ = (p - Pc)/Pc. In the scaling theory [-5, 6] 

pA* = Iv(#)l 2-~ gt(z) + pA~ (4) 

where z=lrp(~)ll/~/~(~), ~(z) is a universal function, while pA* is a 
regular background. Thus in binary mistures, one can introduce the 
thermodynamic properties which manifest the universal asymptotic critical 
power laws. For  example, in the one-phase region ( r ( # ) >  0) at the critical 
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isochore [p =po(#)], the singular parts of the isomorphic specific heats 
and susceptibility read 

Cv, J R  = A0z-~(#) (5) 

(0p )  = Foz-'(/~) (6) RTco ~ T,~ 

Cp,,/R = Fo( To/Pc) 2 (dPc/dTJ ~-~(/~) (7) 

where R is the gas constant, Too is the critical temperature of the solvent, 
Po is the critical pressure of the mixture, the derivative (dPo/dT~) is taken 
along the critical line, Ao and /70 are the system-dependent critical 
amplitudes, and ~ and 7 are universal critical exponents. Just as in 
one-component fluids, the correlation length of the critical fluctuations 
of the order parameter diverges at the critical points of mixtures: 

= ~o~ v(~) (8) 

where r is the bare correlation length, of the order of a molecular size. 
According to the latest renormalization-group calculations (see Ref. 2 and 
references cited therein), ~ -- 0.110 +_ 0.003, 7 = 1.239 _+ 0.002, v = 7/(2 - 7) = 
0.630 +0.001, and ~/=0.031 _+0.001. The theoretical values of the critical 
exponent are in excellent agreement with numerous experimental studies 
(for reviews see Refs. 7 and 8). 

The purpose of this paper is to consider the behavior of thermo- 
dynamic and transport properties in binary mixtures on the basis of the 
concept of the universality of critical phenomena. In Section 2, the renor- 
malization of the thermodynamic properties of binary mixtures is analyzed 
and simple expressions for the crossover from one-component-like behavior 
to mixture-like behavior are proposed. In Section3, the crossover 
equations are applied to the dilute-solution case for which the explicit 
dependence on concentration can be derived. Section4 contains the 
analysis of transport properties in critical mixtures. It is shown that the 
cross terms between singular and background parts of the transport 
properties determine the character of renormalization of the thermal 
conductivity in mixtures. Finally, the explicit form of the concentration 
dependence of the transport properties is presented for critical dilute 
solutions in Section 5. 

2. RENORMALIZATION OF THE THERMODYNAMIC 
PROPERTIES 

Experimental conditions may impose restrictions on the choice of 
thermodynamic variables. It is, in practice, impossible to maintain the 
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condition # = constant while the temperature varies (to do this, the compo- 
sition would have to be varied during the measurements). Experiments are 
therefore usually performed at constant p and x, while tt is a function of 
temperature. In this case the experimental conditions are not isomorphic, 
and the universal power laws inherent in one-component fluids are not 
observed. The connection between the isomorphic path t(#) and the 
experimental path z(x) is not analytic [8], 

z 1-~(tt)[1 + z~(#) yz/Xa] = z(x) yl/XA (9) 

where the parameter 

AoRTc dx ( 1 dTc~ 2 
dx / (lO) 

is equal to zero at the critical points of the pure components, and the 
system-dependent parameters y~ and y: are of the order of unity and equal 
to unity in the pure-component limit. Far away from the critical point, 
when 

z(x) ~> x i f f  (11) 

Z(l~) ~- z(x) (12) 

and all the isomorphic properties at x=constant  behave as those in 
one-component fluids [Eqs. (5)-(8)]. Asymptotically close to the critical 
point, when 

z(x) ~ X~A/~ (13) 

z(#) = [ (z(x)/Xa]l/(' ~) (14) 

and renormalization of critical exponents (the "Fisher renormalization") 
takes place (see, for example, Refs. 3 and 8), 

Cv,. _= AoR[Z(x)/XA] -=/(1-=) + (Cv, u) b (15) 

where (Cv, u)b is a "background" specific heat, 

( 53p ) =I'o['C(x)/XA] -~'/(1-c') (16) RTco ~ 7-,~ 

= ~O[Z(x)/XA ] -v/(l-~) (17) 

Equation (9) determines the crossover between one-component-like 
behavior and renormalized behavior of the isomorphic properties. The 
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behavior of the nonisomorphic properties (derivatives of the Helmholtz free 
energy at x =  constant) appear to be more sophisticated. The isochoric 
specific heat Cv,~ at constant x behaves similar to that in a one-component 
fluid and similar to the isomorphic specific heat Cv,, [Eq. (5)] in the 
region determined by inequality (11). However, asymptotically close to the 
critical point, at the condition of inequality (13), the specific heat Cv,~ does 
not diverge any more, remaining finite at the critical point. It is a cusp with 
the infinite derivative [8]: 

CV,~=R(Ao/XA)(1--XAI[T(x)/XA] ~/(l ~)) + (Cv, x)b (18) 

Note that the value of Cv, x at the critical point ("critical background") 

Ao 
(Cv, x)cb= R - (19) x~ 

is not equal to its regular part (Cv, x)b and contains the critical amplitude 
Ao. The derivative (~P/Op)T,x may be written in the form 

(20) 

With account of Eqs. (2), (4), and (6) we have 

( ~ )  dye ~ - - -  [XA'C-~(/0 + 13 -1 (21) 
p,T & 

where the derivative d#c/dx taken along the critical line is constant "in 
general." Then Eq. (20) at the critical isohore p -- Pc(g) takes the form 

r'x = Fo -r~(#)  I + X A T - ~ ( p ) +  1 

where the new characteristic parameter Xr  reads [8] 

xr_ro  dx Tc [dPc_(~P) dTc] 2 
y2 +o Rr~oP~o L dx ~ .~,~ dx J 

(r-- Tr 

(23) 

The expression in brackets in Eq. (23) is proportional to the derivative 
(c~P/~X)T, .. . .  taken at the condition of two-phase coexistence. This 
derivative is zero in an azeotropic mixture. In general, this derivative is not 
zero. Since 7 -~ 1, the range of the renormalization of the susceptibility is 
not very sensitive to the precise value of Xr. Below we put this value equal 
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to (dPo/dx). Thus the properties associated with a strong singularity in 
one-component fluids, such as the isothermal compressibility and isobaric 
specific heat at constant x, manifest in binary mixtures the crossover from 
the strong singularity to the weak one. Their crossover behavior is deter- 
mined by two similar, but numerically not equal, characteristic parameters, 
Xr and XA, introduced above. Far away from the critical point, when 

z(x) ~> X~' (24) 

Cp, x and (Op/OP)r,~ behave as Cp and (8P/SP)r in one-component fluids 
and as Ce,, and (8p/OP)r,, in binary mixtures [-Eqs. (6) and (7)]. 
Asymptotically close to the critical point rat the condition given by 
Eq. (13)], Cp,~ and (SP/SP)T,~ manifest the weak singularity with the 
renormalized critical exponent ~: 

Ce,~ = AoR[z(x)/XA] -~/(1- ~) (25) 

(ap) xA 
-'~ T,x = FO ~ rZ(X)/XA] - ~ / ( 1 -  ct) (26 )  

At last, in the range of temperatures 

X~ ~ ~< z(x) ~< X~ ~ (27) 

Cp,~ and (Op/OP)r,x demonstrate the crossover from one-component-like 
behavior to renormalized behavior. 

The special consideration needs to be made of properties that are 
characteristic of binary mixtures and that do not exist in one-component 
fluids. The "osmotic compressibility," 

_ d x  z(x) ] - , / (1-~)  1} (28) 
d~o {Xr[(XA +-O(x)il + 

has a strong singularity, as (r only when z(x) ~ X~ ~. In this range 
this property can be regarded as the critical susceptibility just as 
(t3p/t~P)T,~. Far away from the critical point (z(x)>>X~ ~) the derivative 
(SX/t3lZ)p,T is regular since the product (dP/~P)r,x (SP/~P)T,~ is constant in 
this region. Asymptotically close to the critical point (z(x)~ X~A/~) 

~p 
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and 

f S x \ / \ S p  
~-~)', ,--~-'~)T,#--['C(x'/XA] ~/(1 - ~) ' 3 0 )  

In the region g~/= X ~  7 "'A <<.Z(X)<<. both derivatives, (0x/0p)p,r and 
(~x/Op)p,r, exhibit crossover from regular mixture-like behavior to the 
singular critical behavior: "strong" for (~xpp)e ,r  and "weak" for 
(ax/0pL, ~. 

3. CROSSOVER IN DILUTE SOLUTIONS 

A dilute solution (x ~ 1) provides a good opportunity to demonstrate 
explicitly the crossover from one-component-like critical behavior of the 
thermodynamic properties to mixture-like behavior as a function of the 
solute concentration. 

In a dilute solution along the critical line 

x -  ~?p --exp (31) 

where Pc is the critical value of p. Thus we have 

In addition, we assume that 

dx x 
dp~ RT~ 

dT~ dTc x 

d#c dx RT~ 

(32) 

(33) 

OP) dP c (34) 
~x  r, . . . .  ~- dx 

In the parameters XA and X r that determine the renormalization of 
the thermodynamic properties, the small parameter x appears: 

(• 
)CA ~-- Aox \ L  dx / (35) 

( 1  dPc5 2 
x r  ~- fox  \ ~  -d;~ / (36) 

Thus the behavior of a critical dilute solution is determined by two 
y1/= Strong "cones": a wide one, z ~ X ~  ~, and a narrow one, * ~ " A "  

singularities (~P/OP)T,x ~ Cp, x ~ z-~ are cut off within the wide cone, while 
within the narrow cone the Fisher renormalization of the critical exponents 
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takes place. Let us consider, for example, the quantity (O#/Ox)e,r, charac- 
terizing the thermodynamic stability of a binary mixture [see Eq. (28)]. 
At r >> X ~  ~ 

( 0 # ) _  RT (37) 
~X p, T X 

and 

In the range X 1/~ < ~ < X~ ~ 

(38) 

-~ - -  ( 3 9 )  
P,T X 

Ox/,, r x (40) 

~P ~-RTr176176162176 c dx J (41) 
7 p T ,  x 

( ~ ) r , = R T c o F o l t ' ( x )  (42) 

and, as it follows from Eq. (28), 

which is zero at all points on the critical line. 2 Finally, in the range r ~ X~ ~ 
asymptotically close to the critical point 

~xx p,r = XXA \--X-~AJ (44) 

(z(x)~ ' /~  ~) (46) 

(~#) ~ RT ( z ~ '/(1-~' RT 1 f l dP~'~ 2 (z(x)~'/~l ~) (47) 

The second critical condition (~ 2~/~X 2)p, T = 0 in a dilute limit is provided by vanishing the 
second derivative ( 0 2 P / O p Z ) r  ~ x [9],  
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Thus at infinite dilution the range in which (~?y/Ox)p. r is small shrinks 
to the critical point of the pure solvent. On the critical line (~Y/~x)e, r = 0 
for all x, and the solution cannot be regarded as dilute for any arbitrary 
low concentration of dissolved substance. 

Now we assume the simplest form of a crossover formula for the 
thermodynamic quantities that incorporates the correct asymptotic 
behavior expressed by Eqs. (37) (47): 

k A ~-;~(x)J +1} RT (48) 

-~ r,x=R---~ \XA+V~(X)} + Xr+-,(X ) (49) 

(ZcdPc~2[,A(T,(x) ~ ~/(1-~) 1 ] 
CP'x=F~ -Xrrr \XA + r~(X)] + Xr+r ' ( x )  R (50) 

"'T = xA x A + ~ ( x )  ) +1 R T  (51) 

The crossover behavior of the critical susceptibility (Ox/~y)e,r and isobaric 
specific heat is shown in Figs. 1 and 2. The values of the system-dependent 
parameters in Eqs. (48) and (50) here and below were taken for the dilute 
binary solution metane-ethane (x is the mole fraction of ethane) [10]. As 
shown in Fig. 1, the smaller x, the narrower the range of strong singularity 
of the susceptibility (c?x/@)e,r. The behavior of the specific heat Ce, x, as 
shown in Fig. 2, is characterized by crossover from the strong singularity 
far away from the critical point to the weak singularity closer to the critical 
point. The smaller x, the narrower the range of the weak singularity of the 
specific heat C e, x. 

Finally, we consider the derivative (@/OT)e,T, which plays an impor- 
tant role in the behavior of the transport properties of critical binary 
mixtures. According to the thermodynamic relation 

c~y ~?x c?x ~?P 

where the derivative (~P/~T)o,~=constant at the critical point. For the 
derivatives (ctx/c?T)p,~ and (Ox/Op)r,~, using Eqs. (2), (4), and (31) we 
obtain 

-~P r,~ \ 8--T-~# ) p - PZ ~ dx } (54) 
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Fig. 1. The critical behavior of the 
dimensionless "osmotic compressibility" 
( 1 / R T ) ( O X / 8 l ~ ) p , r  according to Eq. (48), All 
the system-dependent parameters herein and 
hereafter were taken for the mixture 
methane-ethane (x is the mole fraction of 
ethane) 1-10]: Ao=4.8, Fo=0.2, (1/Tc) 
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Fig. 2. The critical behavior of the isobaric 
specific heat Cp, x according to Eq. (50). 
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As can be seen from Eqs. (52)-(54), the behavior of the derivative 
(O#/#T)p,x is determined by the derivative (@/OX)p,v. At r ~ X ~  ~ the 
second term in the brackets on the right-hand side of Eq. (52) dominates, 
the singularities of (~?t~/#x)~, r and (@/~P)r , .  compensate each other [see 
Eqs. (6), (12) (16), (43), and (47)], and the value of (@/OT)e,x remains 
finite: 

(~)  R To (55) 
~-T e,x - x dTo/dx 

Far away from the critical point [at condition (24)] (~#/OX)p,T~(1/X) 
[see Eq. (39)] and 

-~ R In x (56) 
-T P,x 

i.e., it is also finite. So the derivative (3IA/3T)p,x is finite at the critical point 
of a mixture "in general" and diverges along the critical line as x-1 while 
X --'~ O. 

4. TRANSPORT PROPERTIES 

The singularities of transport properties in the critical region are 
induced by the critical slowing down of the fluctuations in the order 
parameter. The single temporal scale of this slowing down is the critical 
relaxation time 

tc = ~2/X (57) 

where in one-component fluids 

Z = 2/pCp (58) 

is the thermal diffusivity, it is the thermal conductivity, Cv is the isobaric 
specific heat. 

According to the dynamic scaling theory [11 ] 

Z = kB T / 6 ~ r  (59) 

and 

) = k B T p  
6 ~  Ce + 2b (60) 

84o/i3/s-lo 
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where kB is Boltzmann's constant, ~/ is the shear viscosity, and 2b is the 
background part of the thermal conductivity, that is, a regular function. 
The correlation length r diverges at the critical point. In the first 
approximation, one can neglect the possible weak singularity of the shear 
viscosity and estimate the following behavior of the critical (singular) 
enhancement of the thermal conductivity [ 11 ] 

/~ = ~s ~- ,~b (61) 

2~ _ k s T p  Cp~z~_~+v) (62) 
6rcq~ 

The simplifications made above allowed Sengers and his co-workers to 
develop the dynamic scaling theory for description of the thermal conduc- 
tivity of the various fluids in the wide region around the critical point [12]. 

In binary mixtures the situation is much more complicated. The 
Onsager expressions for the diffusion current J~ and heat current Jq in 
binary mixtures read: 

Jd = -- ~V# - t~VT (63) 

Jq = - - 7 " V T -  T~V# + Jd# (64) 

where ~, fl, and ~ are the Onsager kinetic coefficients. The coefficient 
determines the pure heat current at constant chemical potential (when 
v~=0): 

q = Jq - #Jd = --7 ~VT (65) 

Thus ~ plays the same role in binary mixtures as 2 in one-component fluids. 
Analogously, the thermal diffusivity of binary mixtures at constant 
chemical potential can be introduced: 

= ~/pCp,~ (66) 

Ce,~ \OTJp.~, 

where 

(67) 

(S is the molar entropy). The coefficient ~ is associated with the mutual 
diffusion in binary mixtures 

D = (~/p)(d#/~x)p. T (68) 

and can be regarded as a mutual "mobility" of the components. 
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Generalization of the isomorphism concept to transport phenomena 
[3, 13] leads to the Einstein-Stokes diffusion expression given by Eq. (59) 
for both )~ and D asymptotically close to the critical point of a mixture: 

kBT 
) ~ = D -  (69) 

67ff/~ 

The Onsager kinetic coefficients ~,/~, and ~ diverge at the critical point 
just as the thermal conductivity at the critical point of a one-component 
fluid. The mode-coupling calculations performed by Giterman and 
Gorodetskii [13], and Mistura [14] corroborates this assumption and 
leads to the following expression for ~, ~, and ~: 

~=kBT2P(~S) 
- -  + 'Tb (70)  
6rcf/~ ~-T p,~ 

~=kBTp(c~x) 
+~b (71) 

_ kBTp(Ox) 
+ 5b (72) 

where ~b, ~b, and ~b are background (regular) part of the kinetic 
coefficients. The thermal conductivity of a mixture is defined by the 
equations 

q = - 2 V T ~  
Jd = 0 J (73) 

and related to the kinetic coefficients ~, ~, and ~ with the following relation: 

)~ = .~_ (]~2/~) (74) 

Using the thermodynamical relations 

0x 

~?x c~# ~?x 

(75) 

(76) 

we can easily show that the thermal conductivity does not diverge at the 
critical point of a mixture. Neglecting the background parts of the kinetic 
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coefficients, Mistura [14, 15] obtained the following expression of the 
asymptotic critical enhancement A2c : 

A2c = kB Tp Cp x (77) 
67zt/~ ' 

In contrast to one-component fluids, that vanishes at the critical point 
because Cp.x diverges weaker than ~ [see Eqs. (17) and (25)]. 

Here we show that Mistura's formula for the critical enhancement 
of the thermal conductivity is not correct. The correct formula can be 
obtained by including the cross terms between regular and background 
parts of the kinetic coefficients) Substituting Eqs. (70)-(72) for the kinetic 
coefficients into Eq. (74), we obtain, by account of Eqs. (75) and (76), 

= c p ,  x - 

+ \ ~ j  e, ~b + 2T (~--~)e,//~b + yb (78) 

Both the first and the second terms in Eq. (78) vanish at the critical point, 
however, they provide the divergence of the temperature derivative. The 
sign of the derivative at the critical point will depend on competition these 
terms. At the condition given by Eq. (13), in accordance with Eqs. (17) and 
(25), the first term in Eq. (78) reads 

kB T C e, x ~ "r (v + r -~ ' ) (x  ) 
6 ~  

(79) 

where the new exponent ~b determines the behavior of the shear viscosity of 
a mixture along the critical isochore: 

0=Obr-o( ) (80) 

where 0b is a viscosity background. For the second term, according to 
Eqs. (17), (47), and (72), we obtain 

T ~# 2 

3 This is also shown by Mostert and Sengers [-16]. 
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Since 7 = (2- r / )v ,  the difference of the exponents in Eqs. (79) and (81) is 

A--7--v--Tai v+~b-c~ e - t / v -2~b  (82) 
1 - ~  1 - ~  1 - ~  

Using the theoretical values of the critical exponents c~, 7, and v, we con- 
clude that A -0 .1  if the viscosity s in Eqs. (70)-(72) remains constant in 
the critical point or A -  0 (within the accuracy of the critical-exponent 
values), where F/is the usual low-frequency shear viscosity (~b = 0.042 [ 17 ] ). 
In both cases asymptotically close to the critical point the corresponding 
critical exponents characterizing the two singular terms are practically 
equal and their competition will strongly depend on the values of 
amplitudes. It is important to note that exactly at the critical point the 
value of the thermal conductivity 2cb (we call it the "critical background") 
is determined by the regular part of the kinetic coefficients as well as by the 
thermodynamic derivative (O#/OT)e.r: 

0#'] 0# f 

To calculate the thermo- and barodiffusivity we represent the diffusion 
current in the following form: 

Jd = D V x  - k.r D V T -  k p D V P  (84) 

where 

(0#) +  r/p (85) kTD = (~T/p)  - ~  P,r 

0# 
keD=(~ /pP) ( -~ - f i ) x ,  r (86) 

Taking into account the connection between the singular part of 5 and 
j~ [see Eqs. (71) and (72)], we obtain asymptotically close to the critical 
point that the thermal diffusivity 

T 
DT = k r D  = - -  [~b + 5b(O#/OT)x,e] = constant 

P 
(87) 

and the barodiffusivity 

De = k p D  ~ ~ --* oo (88) 
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5. T R A N S P O R T  PROPERTIES OF D I L U T E  S O L U T I O N S  

In dilute solutions (x ~ 1), the explicit concentration dependence for 
regular and singular parts of the kinetic coefficients and thermodynamic 
derivatives are known. Far away from the critical point ~-----Sb, 
(Op/OX)e,r"~X 1 [Eq. (39)] and the diffusion coefficient, according to its 
definition, Eq. (68), 

where 

5bRT (%RT 
D = = (89) 

px p 

1 
~b = ~0 x and 80 - 6zr0b r 

(N A is Avogadro's number). Equation (89) corresponds to the well-known 
dilute-solution limit for the diffusion coefficient 

D = Do = bRT (90) 

where b = ~o/P is the molecular mobility. The regular part of ~ manifests 
the concentration dependence similar to ~b: 

~b = ]~oX (91) 

AS for the regular part of y, it is, within the accuracy of correction of order 
of x, equal to the regular part of the thermal conductivity: 

~b = •b + T(~2]  x (92) 
\~o /  

In this region the singular parts of ~ and ~ are much less then the regular 
ones and the thermal conductivity of a mixture behaves as that of a one- 
component fluid. The opposite case is the immediate vicinity of critical 
point. In the region (v ~X~/~), according to Eqs. (72), (47), and (17), 

=~~176 dx J ~ +~oX 

~ (~AA) - ( ' -  v -  ~)/(1- ~) = ~bXr + ~0 x (93) 

and the critical background of the thermal conductivity is 

2cb=& + T(~/~o) x + 2 R r ~ o ( a L / a x )  ' + ~oAoLRZX2 ~ (94) 
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Since the first three terms in Eq. (94) become constant upon approach- 
ing the critical point of the solvent and XA ~ Xr,  the critical background 

1 of the thermal conductivity diverges along the critical line as x 
Asymptotically close to the critical point 

2=)you T~176 ~ ~(y--v--q~)/(1--~) 
xAxr \XA, /  (95) 

In the case of divergent 0, as shown above [Eq. (82)], the exponents of the 
two singular terms in Eq. (95) are practically equal and in dilute solutions 
the negative term is dominant. Since XA ~ Xr  ~ x, the thermal conductivity 
has a cusp diverging as x 1 approaching the critical point of a solvent with 
the infinite temperature derivative, whose amplitude diverges as x 2. In the 
case of a nondivergent 0 the situation is determined by the competition 
of these terms. Experimentally the first term will dominate anyway at 
sufficiently small concentrations. So very close to the critical point of a 
solvent (see Fig. 3), 

)~cb ---- ~oAoTcR2XA 1 (96) 

and 

2~- ToR2~oAoX; L 1-xr ,  (97) 

250  . i , 

200  

1 5o 

'2 

l o o  502____ 
0 i J i i 

0 . 0 0  0 . 0 2  0 . 0 4  0 . 0 6  0 . 0 8  0 . 1 0  

.35' 

Fig. 3. The dimensionless critical background 
~[cb = "~cb/~oR2Te of the thermal conductivity of 

a mixture according to Eq. (96). 
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which may be compared with the corresponding expression for the renor- 
malized isochoric specific heat [see Eq. (18)]. The diffusion coefficient 

kBT ~oRT( T ~(v+q/)/(1--a) 
D 6u#~ P \X-~A/ (98) 

The thermo- and barodiffusivity 

aoRT+ T~o x 
DT ~ "-* Do = constant (99) 

P P 

Dp I'~176 ( dec ~(S~'-'~ -(7-v ~b)/(1-cQ 
- p \Pc dxJ\XA/ (100) 

The crossover from one-component-like behavior to mixture-like 
behavior takes place in the range J(~A/~ ~ <~ X~ ~. In this region the situa- 
tion depends on the competition between the singular and the regular parts 
of the transport properties (see also Ref. 18). The explicit form of the cross- 
over for the thermal conductivity from one-component-like behavior to 
mixture-like behavior can be obtained using the dilute-limit expressions 
for all terms entering Eq. (78) and the approximate solution of Eq. (9) 
(T1- a~(~) = T(x)[X A 2i_ Tu(X)] -1):  

~ =  , t - &  r {r~dP~ ~ ( ~-----L--) -~/(~-~, 

\Xa + V/  

where 

{ ( I (  ,1t 1 Y(v)= 1 = 1 + \ X i + z ~  / l + X r  (101) 

Within the "cone" ~ < X~ v, using the expression for (Op/OT)e,x given by 
Eq. (55), we have 

+~AA~ (l+_~x dTo) ] Y(z) (102) 

The crossover behavior of the thermal conductivity in critical dilute 
mixtures is shown in Fig. 4. One can see that the higher the solute concen- 
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120 

10080 : r : 0 ~  x:0 

~< 60 <1 

2O 
.z'= O. I - " t 

-5 -4 -3 -2 
tog ~- 

Fig. 4. The critical enhancement of the thermal 
conductivity A~=(2--2u)/~oR2T~ in critical 

mixtures according to Eq. (101). 

tration, the smaller the thermal-conductivity enhancement. However, even 
for x = 0.1 the pronounced critical enhancement still exists. When ~ >> X ~  ~, 
Eq. (101) with account of Eq. (56) reads 

+ v  

o \p~ dTU +*(x) (103) 

and the thermal conductivity of a mixture behaves as that of a one- 
component fluid. 

6. CONCLUSION 

All thermophysical properties in binary mixture can be divided into 
three groups. 

Isomorphic: Cp,~,Cv,~,(~P~ ,~,~,F/,~ 
\ u p /  T,V 

Nonisomorphic: Cv .... Cp,.~,(~P~ ,2, Z 
\ u p /  T,x 

@ 
Special: (~--~X)p,T' (~----~PX),~ ( - ~  e,x' s "fl, D 
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The isomorphic values behave as the corresponding values behave in 
one-component fluids. The only difference is the renormalization of the 
thermodynamic path at constant concentration (z --, C/(1-~)). The non- 
isomorphic values behave differently from those in one-component fluids: 
e.g., Cv, x and 2 remain finite, and Ce.x and (Op/OP)r,x) diverge weakly. 
The special values exist only in mixtures and manifest the critical behavior 
only in the narrow interval of r dependent on x (concentration of a 
mixture). The lower the concentration, the narrower the interval of their 
critical behavior. The dilute-solution limit provides an opportunity to write 
in the explicit concentration-dependent form the crossover functions from 
one-component-like behavior to mixture-like behavior. However, it should 
be emphasized that all formulae presented above have been obtained at the 
limit ~ ~ 1. It means that even "far away from the critical point" in accord- 
ance with ~ >> ~ r ,  we should keep in mind that the limit ~ ~ 1 is assumed 
throughout anyway. For the description of the entirely wide region around 
the critical line, one needs the other crossover problem to be solved: the 
crossover from analytical regular behavior far away from the critical point 
to the nonanalytical (critical) behavior. This problem can be regarded as 
solved "in principle" for thermodynamic as well as for transport properties 
of one-component fluids [2, 19, 20] but it is still being formulated for 
binary mixtures [211. Although the existing experimental rsults on the 
thermal conductivity of mixtures [22-24] are in qualitative agreement with 
the theory developed in this paper, more experimental studies in the entire 
neighborhood of the vapor-liquid critical line are needed for the quan- 
titative description of transport coefficients of near-critical mixtures. 
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